平成28年度神奈川県公立高校入試問題〈理科〉における、乱択での得点期待値は「17.26点」です。
まったく知識のない受験生があてずっぽうで(=乱択で)選択問題だけを解いた場合の得点期待値を計算しました。
それぞれの問題の配点に「当たる確率」(4択問題であれば、「4分の1」)を掛けた値を合算しています。
※ 出題ミスについては考慮していません。
神奈川県公立高校入試2016 理科
4択問題
4択問題(上図中の青い部分)は全部で19問ありました。
配点は、
- 問1~4が各3点(11問)
- 問5(ア)が4点(1問)
- 問6が各3点(2問)
- 問7(ア)が4点(1問)
- 問8が各4点(4問)
で、3点問題が13問、4点問題が6問です。
ここから、4択問題での得点の期待値は「4分の63点」となります。
(3×1/4)×13+(4×1/4)×6
=39/4+24/4
=63/4
その他
その他の選択問題(上図中の緑色の部分)です。
- 問2の(イ)は8択問題です。配点は3点なので、得点の期待値は「8分の3点」です。
- 問7の(イ)の(ⅱ)は、YとZが「両方できて4点」です。Yが3択、Zが4択なので、解答パターンは全部で12通りです。ここから、得点の期待値は「12分の4点」となります。
- 問7の(ウ)は5択問題です。配点は4点なので、得点の期待値は「5分の4点」です。
合計
以上をすべて足し合わせて、小数第3位を四捨五入すると、
63/4+3/8+4/12+4/5
=126/8+3/8+20/60+48/60
=129/8+68/60
=16.125+68/60
=17.26
となります。
参考
- 神奈川県教育委員会,「共通選抜における学力検査問題」, http://www.pref.kanagawa.jp/cnt/f160600/p885592.html ,2016年8月4日閲覧.
- 平成28年度 神奈川県公立高校入試〈国語〉 乱択での得点期待値
- 平成28年度 神奈川県公立高校入試〈社会〉 乱択での得点期待値
- 平成28年度 神奈川県公立高校入試〈英語〉 乱択での得点期待値